Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38296909

RESUMO

Artemisia argyi, commonly known as wormwood, is a traditional Chinese herbal food and medicine celebrated for its notable antibacterial and anti-inflammatory properties. This study explores a novel delivery method for wormwood, aiming for more convenient and versatile applications. Specifically, we present the first investigation into combining wormwood with microstructures to create a microneedle (MN) patch for wound healing. The wormwood microneedle (WMN) patch is formulated with milled wormwood sap, calcium carbonate, and sodium hyaluronate. The addition of 0.3% (w/v) sodium hyaluronate enhances the mechanical strength of the WMN patch. Pectin, derived from wormwood, is combined with calcium carbonate to create a gelatinous and solidified substance. The WMN patch exhibits a well-defined shape and sufficient mechanical strength to penetrate the epidermis, as confirmed by our results. In vitro experiments demonstrate the biocompatibility of the WMN patch with fibroblasts and highlight its antibacterial and anti-inflammatory properties. Furthermore, the patch facilitates collagen deposition at the wound site. In an excisional rat model, the WMN patch significantly accelerates the wound closure rate compared to the control group. Our findings suggest that the WMN patch has the potential to serve as a natural treatment for wound healing. Additionally, this approach can be extended to other biologically active substances with similar physiochemical characteristics in future applications.

2.
Int J Biol Macromol ; 230: 123127, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603722

RESUMO

Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.


Assuntos
Antineoplásicos , Cromatóforos , Curcumina , Nanopartículas , Neoplasias , Humanos , Curcumina/química , Portadores de Fármacos/química , Microambiente Tumoral , Antineoplásicos/química , Neoplasias/tratamento farmacológico , ATPases Translocadoras de Prótons , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química
3.
Drug Deliv ; 27(1): 1147-1155, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32729341

RESUMO

Increasingly attention has been paid to the transdermal drug delivery systems with microneedles owing to their excellent compliance, high efficiency, and controllable drug release, therefore, become promising alternative with tremendous advantages for delivering specific drugs such as huperzine A (Hup A) for treatment of Alzheimer's disease (AD) yet with low oral bioavailability. The purpose of the present study is to design, prepare, and evaluate a dissolving microneedle patch (DMNP) as a transdermal delivery system for the Hup A, investigating its in vitro drug release profiles and in vivo pharmacokinetics as well as pharmacodynamics treating of AD. Skin penetration experiments and intradermal dissolution tests showed that the blank DMNP could successfully penetrate the skin with an adequate depth and could be quickly dissolved within 5 min. In vitro transdermal release tests exhibited that more than 80% of the Hup A was accumulatively permeated from DMNP through the skin within three days, indicating a sustained release profile. In vivo pharmacokinetic analysis demonstrated that the DMNP group resulted in longer T max (twofold), longer t 1/2 (fivefold), lower C max (3:4), and larger AUC(0-∞) (twofold), compared with the oral group at the same dose of Hup A. Pharmacodynamic research showed a significant improvement in cognitive function in AD rats treated with DMNP-Hup A and Oral-Hup A, as compared to the model group without treatment. Those results demonstrated that this predesigned DMNP is a promising alternative to deliver Hup A transdermally for the treatment of AD.


Assuntos
Alcaloides/administração & dosagem , Alcaloides/farmacologia , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacologia , Microinjeções/métodos , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Administração Cutânea , Alcaloides/farmacocinética , Animais , Área Sob a Curva , Materiais Biocompatíveis , Inibidores da Colinesterase/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Masculino , Agulhas , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/farmacocinética , Pele/metabolismo
4.
J Nanobiotechnology ; 18(1): 48, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183823

RESUMO

BACKGROUND: Specific targeting ability and good cell penetration are two critical requirements of tumor-targeted delivery systems. In the present work, we developed a novel matrix metalloprotein-triggered, cell-penetrating, peptide-modified, star-shaped nanoparticle (NP) based on a functionalized copolymer (MePEG-Peptide-Tri-CL), with the peptide composed of GPLGIAG (matrix metalloprotein-triggered peptide for targeted delivery) and r9 (cell-penetrating peptide for penetration improvement) to enhance its biological specificity and therapeutic effect. RESULTS: Based on the in vitro release study, a sustained release profile was achieved for curcumin (Cur) release from the Cur-P-NPs at pH 7.4. Furthermore, the release rate of Cur was accelerated in the enzymatic reaction. MTT assay results indicated that the biocompatibility of polymer NPs (P-NPs) was inversely related to the NP concentration, while the efficiency toward tumor cell inhibition was positively related to the Cur-P-NP concentration. In addition, Cur-P-NPs showed higher fluorescence intensity than Cur-NPs in tumor cells, indicating improved penetration of tumor cells. An in vivo biodistribution study further demonstrated that Cur-P-NPs exhibited stronger targeting to A549 xenografts than to normal tissue. Furthermore, the strongest tumor growth inhibition (76.95%) was observed in Cur-P-NP-treated A549 tumor xenograft nude mice, with slight pulmonary toxicity. CONCLUSION: All results demonstrated that Cur-P-NP is a promising drug delivery system that possesses specific enzyme responsiveness for use in anti-tumor therapy.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Metaloproteínas/farmacologia , Nanopartículas/administração & dosagem , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Curcumina/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Drug Deliv ; 26(1): 1027-1038, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31691601

RESUMO

The limitations of anticancer drugs, including poor tumor targeting and weak uptake efficiency, are important factors affecting tumor therapy. According to characteristics of the tumor microenvironment, in this study, we aimed to synthesize matrix metalloproteinase (MMP)-responsive curcumin (Cur)-loaded nanoparticles (Cur-P-NPs) based on amphiphilic block copolymer (MePEG-peptide-PET-PCL) with MMP-cleavable peptide (GPLGIAGQ) and penetrating peptide (r9), modified to improve tumor targeting and cellular uptake. The average size of Cur-P-NPs was 176.9 nm, with a zeta potential of 8.1 mV, and they showed drug entrapment efficiency and a loading capacity of 87.07% ± 0.63% and 7.44% ± 0.16%, respectively. Furthermore, Cur release from Cur-P-NPs was sustained for 144 h at pH 7.4, and the release rate was accelerated under enzyme reaction condition. The MTT assay demonstrated that free P-NPs had favorable biosafety, and the anti-proliferative activity of Cur-P-NPs was positively correlated with Cur concentration in MCF-7 cells. Additionally, the results of cellular uptake, in vivo pharmacokinetics, and biodistribution showed that Cur-P-NPs had a good effect on cellular uptake and tumor targeting, resulting in the best bioavailability in tumor therapy. Therefore, Cur-P-NPs, as a promising drug delivery system, might lead to a new and efficient route for targeted therapy in clinical practice.


Assuntos
Curcumina/farmacologia , Metaloproteinases da Matriz/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Curcumina/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Neoplasias/metabolismo , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos
6.
J Nanobiotechnology ; 16(1): 57, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012166

RESUMO

BACKGROUND: Matrix-metalloproteinases, which are overexpressed in many types of cancer, can be applied to improve the bioavailability of chemotherapeutic drugs and guide therapeutic targeting. Thus, we aimed to develop enzyme-responsive nanoparticles based on a functionalized copolymer (mPEG-Peptide-PCL), which was sensitive to matrix metalloproteinase, as smart drug vesicles for enhanced biological specificity and reduced side effects. RESULTS: The rate of in vitro curcumin (Cur) release from Cur-P-NPs was not markedly accelerated in weakly acidic tumor microenvironment, indicating a stable intracellular concentration and a consistent therapeutic effect. Meanwhile, P-NPs and Cur-P-NPs displayed prominent biocompatibility, biostability, and inhibition efficiency in tumor cells. In addition, Cur-P-NPs showed higher fluorescence intensity than Cur-NPs in tumor cells, implying enhanced cell permeability and targeting ability. Moreover, the internalization and intracellular transport of Cur-P-NPs were mainly via macropinocytosis. Studies of pharmacodynamics and cellular uptake in vitro and biodistribution in vivo demonstrated that Cur-P-NPs had stronger target efficiency and therapeutic effect than Cur-DMSO and Cur-NPs in tumor tissue. CONCLUSION: Results indicate that Cur-P-NPs can be employed for active targeted drug delivery in cancer treatment and other biomedical applications.


Assuntos
Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Terapia de Alvo Molecular , Nanopartículas/uso terapêutico , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA